GSFC Meteorological - Model - Satellite Products for TRACE-P

Anne M Thompson

NASA-GSFC (301-614-5731) & Univ. Maryland; thompson@gator1.gsfc.nasa.gov

K E Pickering, A D Frolov

Dept Meteorology, Univ. Maryland frolov@atmos.umd.edu

J C Witte & T L Kucsera (SSAI) NASA-GSFC, Maryland

- Review Scope of Study
- GSFC Website Resource Update <code916.gsfc.nasa.gov/Missions/TRACEP>
- Ozone Product Validation, Availability (AMT)
- Meteorological Ozone Connections, other GSFC product evaluation (KEP)

SCOPE OF GSFC STUDY FOR TRACE-P

- Provide meteorological analyses for flight days based on GSFC-DAO-ASM model same as used for Harvard-GEOS Model.
- Supply meteorologically based air-mass history ("exposure") and satellite imagery, e.g.
 - TOMS tropospheric ozone (TDOT method)
 - TOMS aerosols & "Exposure"
 - SeaWIFs aerosols
 - TRMM/LIS lightning flashes & "Exposure"
 - RDFs for PV show tropical-subtropicalmid-lat-polar air

Above at

<code916.gsfc.nasa.gov/Missions/TRACEP>
 Note! Flight Days only

- Emphasize evaluation of developmental TDOT ozone data.
 - L See Poster

TRAnsport & Chemical Evolution over the Pacific (TRACE-P)

Mission Planning Images: A NASA/GTE Aircraft Mission

TRACE-P DC-8 Status Updates TRACE-P P-3B Status Updates ACE-Asia (Spring 2001)

NEW CLICK HERE FOR MISSION ANALYSES NEW

Note that not all dates within this period may be available.

48 & 72 hour forecasts are generated (Select "current" forecast to get the latest available)

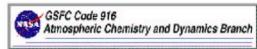
Select Day, Month, Year, Hour and Forecast hour of interest, then click SUBMIT

Year: Month: Day: Hour: Forecast: 2001 March 15 00 current SUBMIT

SUMMARY OF MODEL PRODUCTS AND ANALYSES FOR TRACE-P

Product	Image Label in Archive
Air Parcel Exposure to Aircraft Products	Fuel, NOx, HC, CO [kg/day] EAYYYYMMDDHH_FHXX, Theta sfc's = 300, 330, 340
Lightning Exposure	ELYYYYMMDDHH_FHXX, Theta sfc's = 300, 330, 340
Reverse domain fill - Modified Potential Vorticity	RDYYYYMMDDHH_FHXX
Meteorological Quantities	PTYYYYMMDDHH_FHXX, Theta sfc's = 300, 330, 340 PPYYYYMMDDHH_FHXX, Press sfc's = 250, 300, 500, 700, 850, 925mb
Dust Exposure	EDYYYYMMDDHH_FHXX, Constant 300 Theta sfc
Regional TOMS Aerosol	TNYYYYMMDD, Daily plots
Global TOMS Aerosol	TSYYYYMMDD, Daily plots
Regional Lightning	LNYYYYMMDD, Daily plots
Global Lightning	LOYYYYMMDD, Daily plots
TOMS Direct Ozone in the Trop.	TDYYYYMMDD, Clear Sky Radiances, Daily plots
SeaWiFS Aerosol Optical Depth -865	SAYYYYMMDD, Overpass Images
SeaWiFS Cloud Imagery	SCYYYYMMDD, Overpass Images
SeaWiFS Angstrom-510	SAYYYYMMDD, Overpass Images
SeaWiFS Chlorophyll (ocean color)	SOYYYYMMDD, Overpass Images

Principal Investigator: Dr. Anne M. Thompson Team Members:


And Responsible NASA Official NASA/Goddard Space Flight Center (GSFC) Atmospheric Chemistry and Dynamics Branch Code 916, Greenbelt, MD 20771

thompson@gator1.gsfc.nasa.gov phone: 301-614-5731 fax: 301-614-5903

T. L. Kucsera (TOMS products manager)- SSAI at GSFC tlk@code916.gsfc.nasa.gov
K. E. Pickering - UMD pickerin@metosrv2.umd.edu
R. D. Hudson - UMD hudson@metosrv2.umd.edu
A. D. Frolov - UMD frolov@metosrv2.umd.edu C. R. McClain (SeaWiFS data manager) - GSFC mcclain@calval.gsfc.nasa.gov

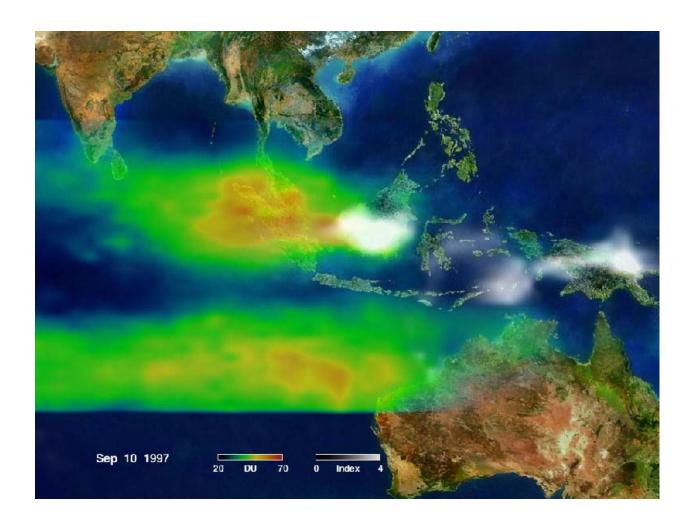
Website designed/managed by J. C. Witte - SSAI at GSFC witte@gavial.gsfc.nasa.gov Last Modified 04-September-2001

MISSION ANALYSES FOR DC-8 AND P-3B FLIGHT DAYS

-->> Back to TRACE-P Homepage

DC-8 Flt #	P-3B Flt #	DATE
	4	2001-February-24
4	5	2001-February-26
5	6	2001-February-27
	7	2001-March-01
6		2001-March-03
	8	2001-March-04
7	9	2001-March-07
8	10	2001-March-09
9	11	2001-March-10
10	12	2001-March-13
11	13	2001-March-17
12	14	2001-March-18
13		2001-March-20
	15	2001-March-21
14	16	2001-March-23
15		2001-March-26
	17	2001-March-27
16		2001-March-29

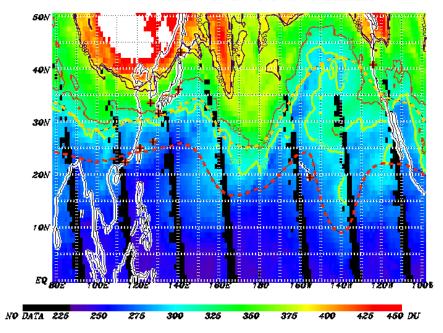
17	18	2001-March-30
	19	2001-April-02
18	20	2001-April-03
19	21	2001-April-06
	22	2001-April-07
20	23	2001-April-09
	24	2001-April-10

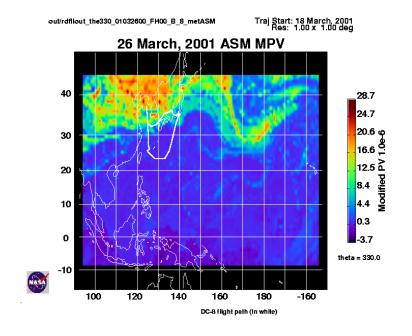


GSFC-UMD TOMS Ozone Satellite Products

- 1> Tropical Tropospheric Ozone = "TTO" by modified-residual method <metosrv2.umd.edu/~tropo>
 - L Smoke aerosol/TTO transport in different layers captured in 1997 Indonesian fires. [Thompson et al., Science, 291, 2128, 2001].
 - L Caveat do not use TTO for TRACE-P until corrected (TOMS scan error).

TOTAL ozone & RDFs display boundaries of polar, mid-latitude, subtropical, tropical air masses. ■ Example - 26 March


- 2> Evaluation of TDO (TOMS-Direct-Ozonein-Troposphere) is scientific objective for our GSFC TRACE-P effort.
 - Compare to Hong Kong, Hilo, 6
 Japanese site sondes.
 - Compare to ozone from flights, models.
 - Example 4 March



TOTAL TOMS OZONE

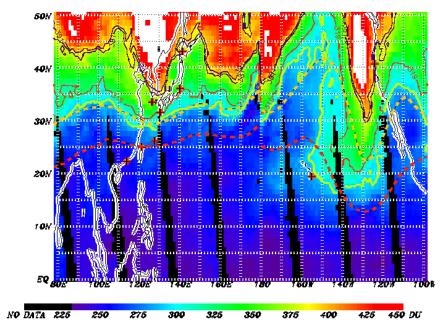
- Daily Level 3 TOMS total ozone & aerosols available from http://toms.gsfc.nasa.gov.
- Regime-classified Level 2 TOMS by two criteria - Do not always agree NCEP geopotential height (4 times daily) - dash TOMS total ozone - solid.
- Regimes tropical / sub-tropical-transition / mid-latitude / polar
- TOTAL ozone from 26 March 2001 & RDF (340K, 330K) display similar regime boundaries.
 - Flight from Yokota north to "stratospheric regime" at 10 km confirms polar origins.
 - RDF from GEOS-ASM.
- Collaborative studies anticipated
 - Langley instruments (O3 in-situ, uv-DIAL, other tracers)
 - Langley-Wisc theory group
 - Other models?

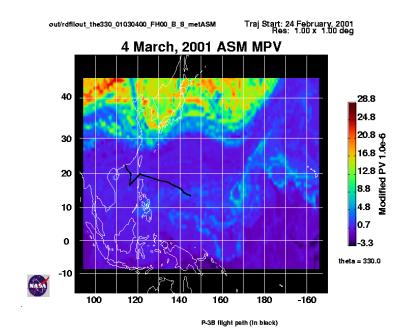
Total O3 from EP-TOMS Iv3 for 03.26.2001.

TDOT TOMS - DIRECT-OZONE-IN TROPOSPHERE

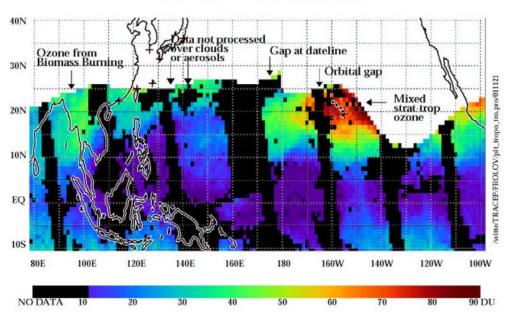
- New algorithm based on TOMS <u>radiances</u> is not a residual type method (cf LaRC, other methods) that starts with TOMS total O3.
- Physical basis is derivation of tropospheric, strat. O3 within distinct meteorological regimes where strat O3 column is fixed [Thompson et al., IGARSS, 2001].
- March 4 shows frontal structure in high TDOT (column ozone, DU) near Hong Kong, Hawaii.
- Collaborative TDOT studies
 - Validation with sondes, DC-8 flight data
 - Evaluate with models GEOS-ASM-CTM NCEP or ECMWF-based CTMs UMD-GEOS-ASM stretched-grid FSU trajectories

TDOT POLLUTION TRANSPORT IN TRACE-P


See Total Ozone, TDOT on 4 March 2001


- Note TDOT has only been derived for tropical air - in principle, TDOT can be obtained in all regimes
- Orbital gaps present in daily maps; large irregular shaped gaps denote clouds
- High aerosol or cloud reflectivities preclude accurate aerosol and/or ozone retrieval

Comparison of TDOT & TRACE-P Sondes, 3/2001


- Agreement for Hong Kong, Naha, Hilo in most cases.
- o Where agreement is poor, station is near a regime boundary, so TDOT is expected to be less accurate. Or nearest clear pixel is far from sonde location, probable cloud interference.

Total O3 from EP-TOMS N3 for 03.04,2001.

TDO from EP-TOMS for 03.04.2001.

PROBLEM: Modified-residual method (also TOMS/SBUV, cloud-slicing) not accurate in extratropics where strato. & tropospheric ozone dynamically variable. These methods are errorprone because they start from TOMS total ozone and latitudinally fixed lookup tables.

TDOT Method (TOMS-Direct-Ozone-in-Troposphere)

- 1) Start with meteorologically coherent regions and TOMS <u>radiances</u> instead of derived total ozone. Use pv (potential vorticity) to separate ozone into "regimes."
- <u>Example</u> July 1999 Fronts divide regimes (orange & red). Three regimes along 75W longitude (cuts in pv, total ozone)
 - Tropical, sub-tropical, mid-latitude
 - Sub-tropical air in July reaches to mid-latitude
- 2) Re-derive Total Ozone & Stratospheric Ozone

Ozone values from B pair approach [Dave & Mateer, 1976]. Select strat. O3 corresponding to max. total O3 (251 DU)

3) Devise New Lookup Tables

Opposite principle from standard TOMS -- create new lookup tables w/ varying tropospheric O3 + fixed strato. O3. Fixed tropopause assumed - 15.8 km

4) Retrieve Tropospheric Ozone

Only from cloud-free radiances; std. Level 3 grid (1x1.25°)

5) Error Analysis:

Combined Stratos. + Tropo. ozone uncertainty is 11 DU.

Anne M Thompson

NASA-GSFC, Code 916, Greenbelt Maryland 20771 anne.thompson@gsfc.nasa.gov

Bibliography-

- GSFC SHADOZ = Southern Hemisphere Additional OZonesondes http://code916.gsfc.nasa.gov/Data_services/shadoz
- UMD/GSFC TTO Web Page
 - http://metosrv2.umd.edu/~tropo Modified-residual maps & data
- GSFC/UMD TDOT & aerosol maps for Feb-April 2000 (click on TD, TR, TN) http://code916.gsfc.nasa.gov/Missions/TRACEP
- NASA-Goddard TOMS Web Page http://toms.gsfc.nasa.gov
- Hudson, R. D., and A. M. Thompson, Tropical Tropospheric Ozone (TTO) maps from TOMS by a modified-residual method, *J. Geophys. Res.*, **103**, 22129 (1998).
- Hudson, R. D., J. Kim, A. M. Thompson, On the derivation of tropospheric column ozone from radiances measured by the total ozone mapping spectrometer, *J. Geophys. Res.*, **100**, 11138 (1995).
- Kim, J-K. R. D. Hudson, A. M. Thompson, A new method of deriving timeaveraged tropospheric column ozone over the tropics using total ozone mapping spectrometer (TOMS) radiances: Intercomparison and analysis using TRACE-A data, *J. Geophys. Res.*, 101, 24317 (1996).
- Thompson, A. M. *et al.*, Where did tropospheric ozone over the southern Africa and the tropical Atlantic come from in October 1992: Insights from TOMS, GTE/TRACE-A, and SAFARI-92, *J. Geophys. Res.*, **101**, 24251 (1996).
- Thompson, A. M., and R. D. Hudson, Tropical Tropospheric Ozone (TTO) maps from Nimbus 7 and Earth-Probe TOMS by the Modified-Residual Method: Evaluation with sondes, ENSO signals and trends based on Atlantic regional time series, *J. Geophys. Res.*, 104, 26961 (1999).
- Thompson, A. M., et al., A tropical Atlantic ozone paradox: Shipboard and satellite views of a tropospheric ozone maximum and wave-one in January-February 1999, *Geophys. Res., Lett.*, 27, 3317 (2000).
- Thompson, A. M., J C Witte, R D Hudson, H Guo, J R Herman, M Fujiwara, Tropical tropospheric ozone and biomass burning, *Science*, **291**, 2128 (2001a).
- Thompson, A. M., J C Witte, and 14 others, The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) tropical ozone climatology: Comparison with TOMS and ground-based measurements, *J. Geophys. Res.*, submitted (2001b).